

Constellation X-ray Mission

Jean Grady

NASA/GSFC

http://constellation.gsfc.nasa.gov

The Constellation X-ray Mission

Constellation-X is X-ray astronomy's equivalent of the Keck telescope

- Effective area: 15,000 cm² at 1 keV
 - 100 times Chandra and XMM for high resolution spectroscopy
- Spectral resolving power: 3,000 at 6.4 keV
 - 5 times Astro-E calorimeter
- Band Pass: 0.25 to 40 keV
 - 100 times more sensitive than Rossi XTE at 40 keV

Highlights from past year

- Revised GSFC/SAO reference mission configuration from six to four spacecraft
 - Results of EELV procurement, consistent with expectations
 - Minimizes launch cost
- Completed mission configuration studies by Ball and TRW (Cooperative Agreement Notice)
- Developed independent cost estimates
- Fabricated light weight 0.5 meter pathfinder shell for X-ray optics from new nickel alloy
- Demonstrated significant improvement in X-ray calorimeter energy resolution, within factor of two of requirement
- Achieved higher resolution, lower noise on CdZeTe detectors

X-ray Equivalent of the Keck Telescope

Imaging

0.1 arc sec 40,000 cm²

Spectroscopy

≤1 arc sec 780,000 cm²

* effective area at the spectrometer

0.6 arc sec 1,000 cm² (100 cm²)*

≤15 arc sec 30,000 cm² (15,000 cm²)*

Science Overview

Constellation-X will address key questions to understanding the Universe

- Can supermassive black holes be used to test General Relativity?
 - Probe close to event horizons to observe effects of General Relativity in the strong gravity limit
 - Determine black hole spin and mass from broad iron line

- When did clusters of galaxies form and how do they evolve?
 - Determine epoch of cluster formation and trace its evolution
 - Measure elemental abundance of 25 elements including Carbon, Oxygen, Silicon, and Iron
 - Map cluster mergers and cooling flows

- Where are the "missing baryons" in the local universe?
 - Detect baryons in the hot IGM via absorption lines they produce in spectra of background quasars
 - Observe the local Lyman alpha forest

Constellation-X Mission Concept

A multiple satellite approach

- To achieve 30,000 cm² aperture on a single satellite requires a Titan-class launch
- An alternative low-risk approach utilizes a constellation of multiple identical low-cost satellites; each carries a portion of the total effective area
- Simultaneous viewing and high efficiency facilitated by using libration point orbit

Baseline configuration:

- Four satellites, launched two at a time on Atlas V or Delta IV
- Extendible optical bench is used to achieve a focal length of 10 m yet allows two satellites to be packaged on a single launch vehicle
- Modular design allows:
 - Parallel development and integration of instrument module and spacecraft bus
 - Low cost standard bus architecture and components

Reference Design

(GSFC/SAO)

Spacecraft Module

Instrument Module

CAN Mission Configurations

- Successfully completed mission concept studies under Cooperative Agreement Notice (CAN) by Ball and TRW by December 1998.
- Two different technically feasible approaches complement GSFC/SAO approach.
- These studies provided independent cost estimates.

Ball Baseline Configuration

- Two satellites, each fully redundant
- Three 1.3 m SXTs plus 9 HXTs per satellite
- Fixed optical bench
- Separate cold and warm ends to design
- Requires two EELVs

TRW Baseline Configuration

- Three satellites
- Two 1.3 m SXT plus four HXTs per satellite
- Extendible optical bench
- Simple s/c bus based on existing designs
- Requires three EELVs

Constellation-X Requirements Flow Down

Science Goals

Parameters of Supermassive Black Holes

Elemental Abundances and Enrichment throughout the Universe

Plasma Diagnostics from Stars to Clusters

Measurement Capabilities

Minimum effective area: SXT

15,000 cm² at 1 keV 6,000 cm² at 6.4keV **HXT** 1,500 cm² at 40 keV

System Angular Resolution and FOV SXT

15" HPD FOV >2.5' **HXT** 1' HPD FOV >8'

Minimum spectral resolving power (E/DE): SXT

300 from 0.25 to 6.0 keV 3000 at 6 keV **HXT**

>10 at 40 keV

Band Pass:

SXT

0.25 to 10 keV

HXT

6 kev to 40 keV

Engineering Implications

Minimum Effective Area:

- •Light Weight Optics (<250 kg.)
- •Extendible Optical Bench (8-10 m)

System Angular Resolution and FOV:

- •Tight tolerances on telescope figure, surface finish, alignment
- ±1 °C temp. control on mirror assembly
- •Requires ≥ 30 x 30 array for microcalorimeter (pixels ~5")
- •Cryocooler requirements driven by array size and readout electronics

Resolving Power:

- Dispersive and nondispersive capability to cover SXT band
- •Dispersive performance tied to telescope resolution

Band Pass:

•2 types of telescopes needed to cover energy range

Key Technologies

High Throughput Optics

- High performance replicated shells and segments
- coatings and layers
- High strength/mass materials for optical surfaces

High Spectral Resolution

- 2 eV microcalorimeter arrays
- Coolers
- Lightweight gratings
- CCD arrays extending to 0.25 keV

Broad Bandpass

- Multilayer optics
- CdZnTe detectors

Extendible Optical Bench

- Stable (vs. time and temp.)
- High strength/low weight materials

Constellation-X Technology

Approach

Lightweight X-ray Optics

- **Extension of demonstrated technology**
- Parallel path technology development with defined selection milestones
- Synergism within program activities, e.g., **SXT and HXT optics**

SR&T, e.g., CdZeTe detectors

X-ray Calorimeters

Cryocoolers

CCD/Gratings

CdZnTe Arrays

Multilayer Coatings

Deployable Structures

Constellation-X

The Constellation-X Technology Roadmap

SXT Replicated Shell X-ray Mirrors

 Goal is to show feasibility of 1.6m replicated shell mirror with normalized weight 1/6 of XMM mirror and Half Power Diameter (HPD) of <10 arc sec

- Developed infrastructure for manufacturing and metrology of large X-ray optics
- Developed high performance electro-formed nickel alloy
 - Micro-yield order of magnitude higher than pure nickel
 - Fabricated 0.5 m pathfinder shell and demonstrated shell separation
 - 0.5 m optic for X-ray testing in process
- Silicon Carbide (SiC)
 - OAB manufactured SiC mirror with HPD ~12-15 arc sec
- Partnership: MSFC/SAO/OAB

SXT Segmented X-ray Mirrors

- Goal is to show feasibility of a 1.6 m replicated segment mirror having a normalized weight of 1/6 XMM and a system HPD of 15 arc sec
 - Segmented approach already meets weight requirement

Current Astro-E Performance 90 Performance Contributors Cone Approximation Mandrels Substrate 80 Metal Mandrel Housing Resolution (Arc Seconds) Estimated Performance is RSS 70 of Contributors 60 • Δ 50 Glass Mandrel, Improved Substrate 40 Si Alignment Bars Improved Substrate 30 20 Figured Wolter Mandrel 10 FY2002 FY1999 FY2000 FY2001

Progress

- Metal mandrel improved mandrel figure by factor of 2 over Astro-E
- Glass mandrel, to be delivered June 1999, will improve mandrel figure by an additional factor of 4
- Designed and fabricated ultra-precise alignment bars using silicon etching technology
- Partnership: GSFC/MIT/SAO/RJHS

X-ray Calorimeters

- Needed: 2 eV FWHM from 1 to 6.9 keV at 1000 counts/s/pixel in 30 x 30 array
- Parallel Approach: TES and NTD/Ge Calorimeters

- Achieved 2.4 eV at 1.5 keV and 4.7 eV at 6 keV!
- Identified robust materials for TES thermometer
- Fabricated and analyzed pop-up Si array structures for TES
- Demonstrated technique for cantilevering TES absorbers
- Manufactured a 16-element NTD/Ge array
- Demonstrated techniques for multiplexing
- Partnership: GSFC/NIST/SAO/UW/LLNL/Stanford

Cooling Systems for X-ray Calorimeter

- Requirement: Long life cooling systems that provide 40 65 mK to calorimeter
- Parallel Approach: Turbo-Brayton or Sorption cooler to 4 8 K with multi-stage ADR
- Progress:
 - Turbo-Brayton
 - 70 K cooler was successfully flown on HOST Shuttle mission
 - 65K cooler completed 3 year endurance test
 - Completed cold bearing tests on 35 K cooler; 10K tests planned for 1999
 - 4-10K breadboard being fabricated for test in late1999
 - Sorption cooler
 - 6K breadboard planned for 2002
- Require funding for multi-stage ADR development

HOST Cooler

Partnership: GSFC/JPL/Creare

Hard X-ray Telescope

HXT Optics

- Requirements: High reflectivity from ≤ 6 to ≥40 keV with 1 arc min. HPD over an 8 arc min. FOV
- Completed opto-mechanical breadboard of thermally-formed glass microsheet optics
 - 40 arc sec HPD figure for mounted shells
 - High-throughput segmented optic mounting technique
- Multi-layer development
 - Measured reflectance corresponding to 2.5A interface widths for complex 300 layer W/Si coating
 - Demonstrated stability of Pt/C multilayers

Detectors

- Requirements: Low threshold (≤6 keV), large format (~1 in. x 1 in.) with high QE
- Demonstrated new, custom, low-noise ASIC/CdZnTe detector
 - 980 eV FWHM (60 keV) factor of 3 improvement over any existing pixel detector
 - 2 keV threshold factor of 5 improvement over any existing pixel detector
 - Required improvements: reduce pixel size 20%, reduce noise factor 2
- Successful selection of near-perfect 1 in. x 1 in. CdZnTe sensors
 - Demonstrated high yield from commercial product using new characterization and screening facility
- Partnership: CalTech/GSFC/Columbia U./MSFC/Harvard/SAO/NW/NRL

Organization

Top Level Schedule

Consistent with Re-phased Guidelines

FISCAL YEAR

Top Level Schedule for 2005 New Start

FISCAL YEAR

Issues

- Constellation-X is the only mission in the 1997 OSS Strategic Plan not adequately funded to support a new start by 2004
- Need to establish earlier launch date to:
 - Provide for timely transition and continuity in high quality X-ray observations
 - Provide overlap between Constellation-X and Chandra for cross calibration and science synergy (similar to Keck and Hubble Space Telescope)
- Need to increase current funding guidelines to:
 - Support technology efforts already selected via peer review in April 1998
 - Maintain momentum and skill base for technology development and mission studies
 - Capitalize on Code S technology investments in Chandra, Astro-E and XMM

The Outlook for Constellation-X

One-year outlook (Spring 2000)

- Complete 0.5 m optic at required weight (1/6 mass normalized to XMM)
- Continue to improve X-ray calorimeter resolution
- Continue development of mission configuration; define error and alignment budgets

Five-year outlook (Spring 2004)

- With current in-guide budget:
 - Conducting Phase A mission studies with two industry partners
 - Technology development in progress
 - Drafting instrument AO in preparation for release
 - About to begin development of SXT production facility
- With requested augmentation:
 - Technology development is complete
 - Instrument AO has been released and the instruments have been selected
 - Mission Prime contractor has been selected
 - Preliminary design is well under way
 - Mission PDR and NAR will occur within the next year